Search results for "Magnetic devices"

showing 6 items of 6 documents

Field-driven domain wall motion under a bias current in the creep andflow regimes in Pt/[CoSiB/Pt](N) nanowires

2016

AbstractThe dynamics of magnetic domain wall (DW) in perpendicular magnetic anisotropy Pt/[CoSiB/Pt]N nanowires was studied by measuring the DW velocity under a magnetic field (H) and an electric current (J) in two extreme regimes of DW creep and flow. Two important findings are addressed. One is that the field-driven DW velocity increases with increasing N in the flow regime, whereas the trend is inverted in the creep regime. The other is that the sign of spin current-induced effective field is gradually reversed with increasing N in both DW creep and flow regimes. To reveal the underlying mechanism of new findings, we performed further experiment and micromagnetic simulation, from which w…

MultidisciplinaryMaterials scienceMagnetic domainCondensed matter physicsSpintronicsMagnetic devices02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesArticleAmorphous solidMagnetic fieldDomain wall (magnetism)Creep0103 physical sciencesElectronic devicesElectric current010306 general physics0210 nano-technologyAnisotropySimulation
researchProduct

Analysis of the finite difference time domain technique to solve the Schrödinger equation for quantum devices

2004

An extension of the finite difference time domain is applied to solve the Schrödinger equation. A systematic analysis of stability and convergence of this technique is carried out in this article. The numerical scheme used to solve the Schrödinger equation differs from the scheme found in electromagnetics. Also, the unit cell employed to model quantum devices is different from the Yee cell used by the electrical engineering community. A bound for the time step is derived to ensure stability. Several numerical experiments in quantum structures demonstrate the accuracy of a second order, comparable to the analysis of electromagnetic devices with the Yee cell. a!Electronic mail: Antonio.Sorian…

PhysicsEigenvalues and eigenfunctionsElectromagneticsQuantum dotsElectromagnetic devicesQuantum wiresUNESCO::FÍSICAFinite-difference time-domain methodFinite difference methodGeneral Physics and AstronomyFinite difference time-domain analysisStability (probability)Schrodinger equationSchrödinger equationsymbols.namesakeQuantum well devices:FÍSICA [UNESCO]Quantum dotQuantum mechanicsConvergence (routing)symbolsApplied mathematicsSchrodinger equation ; Electromagnetic devices ; Finite difference time-domain analysis ; Quantum dots ; Quantum well devices ; Quantum wires ; Eigenvalues and eigenfunctionsQuantumJournal of Applied Physics
researchProduct

Heavy metal exposure in patients suffering from electromagnetic hypersensitivity

2009

Abstract Background Risks from electromagnetic devices are of considerable concern. Electrohypersensitive (EHS) persons attribute a variety of rather unspecific symptoms to the exposure to electromagnetic fields. The pathophysiology of EHS is unknown and therapy remains a challenge. Objectives Heavy metal load has been discussed as a potential factor in the symptomatology of EHS patients. The main objective of the study was to test the hypothesis of a link between EHS and heavy metal exposure. Methods We measured lead, mercury and cadmium concentrations in the blood of 132 patients ( n  = 42 males and n  = 90 females) and 101 controls ( n  = 34 males and n  = 67 females). Results Our result…

Malemedicine.medical_specialtyEnvironmental EngineeringElectromagnetic hypersensitivityElectromagnetic FieldsMetals HeavyInternal medicineHypersensitivitymedicineElectromagnetic devicesHumansEnvironmental ChemistryIn patientWaste Management and DisposalMercury bloodHeavy metal detoxificationChemistryHeavy metalsEnvironmental ExposureMercuryMiddle AgedPollutionLeadEnvironmental chemistryBody BurdenFemaleLead bloodmedicine.symptomCadmiumScience of The Total Environment
researchProduct

A dq axis theory of the magnetic, thermal, and mechanical properties of Curie motor

2011

A dq axis theory of a thermomagnetic Curie motor is presented. This theory allows one to estimate the performances of a Curie motor from its geometrical, magnetic, and thermal properties. The proposed approach shows that the thermomagnetic Curie motor is equivalent from a magnetic point of view to a dc electric machine. The physical meaning of the parameters used in the dq theory of Curie motor is explicated. The theory is validated by using experimental data.

Electric machineElectric motorbusiness.product_categoryCondensed matter physicsChemistryGeneral Physics and AstronomyThermomagnetic convectionSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciQuantitative Biology::Subcellular ProcessesCondensed Matter::Materials ScienceNuclear magnetic resonanceThermalCurieCondensed Matter::Strongly Correlated Electronsbusinesselectric motors magnetic devices
researchProduct

Magnetic domain-wall racetrack memory for high density and fast data storage

2012

The racetrack memory device is a new concept of Magnetic RAM (MRAM) based on controlling domain wall (DW) motion in ferromagnetic nanowires. It promises ultra-high storage density thanks to the possibility to store multiple narrow DWS per memory cell. By using read and write heads based on magnetic tunnel junctions (MTJ) with perpendicular magnetic anisotropy (PMA) fast data access speed can also be achieved. Thereby the racetrack memory can be used as universal storage to address both embedded and standalone applications. In this paper, we present the device physics, integration circuit and architecture designs of a racetrack memory based on MTJs with PMA. Mixed SPICE simulations at 65 nm …

Standalone applicationsMagnetic domainComputer scienceSpiceArchitecture designsMRAM devicesMemory cellElectronic engineeringRacetrack memoryPerpendicular magnetic anisotropyMagnetic domainsMagnetoresistive random-access memoryHardware_MEMORYSTRUCTURESIntegration circuitsNanowiresbusiness.industryMagnetic devicesElectrical engineeringNon-volatile memory technologyDomain wall motionTunnel magnetoresistanceData storage equipmentComputer data storageFerromagnetic nanowireNode (circuits)Magnetic tunnel junctionbusinessRandom access storage
researchProduct

Strain-controlled domain wall injection into nanowires for sensor applications

2021

We investigate experimentally the effects of externally applied strain on the injection of 180$^\circ$ domain walls (DW) from a nucleation pad into magnetic nanowires, as typically used for DW-based sensors. In our study the strain, generated by substrate bending, induces in the material a uniaxial anisotropy due to magnetoelastic coupling. To compare the strain effects, $Co_{40}Fe_{40}B_{20}$, $Ni$ and $Ni_{82}Fe_{18}$ samples with in-plane magnetization and different magnetoelastic coupling are deposited. In these samples, we measure the magnetic field required for the injection of a DW, by imaging differential contrast in a magneto-optical Kerr microscope. We find that strain increases t…

Materials scienceCondensed matter physics530 PhysicsNanowireNucleationGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyPhysics - Applied PhysicsApplied Physics (physics.app-ph)Coercivity021001 nanoscience & nanotechnology530 Physik01 natural sciencesMagnetic fieldMagnetizationMagnetic anisotropyCondensed Matter::Materials ScienceDomain wall (magnetism)Materials properties Magnetic hysteresis Ferromagnetic materials Magnetic anisotropy Magnetic devices Sensors Nanowires Magnetic ordering Magnetic materials0103 physical sciences010306 general physics0210 nano-technologyAnisotropy
researchProduct